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摘要

本报告将介绍 Selberg 一些原始的想法. 这些想法对现代数论有巨大的影响. 报
告面向所有学生，无需很多的预备知识.

Today’s lecture will explore how an original idea is produced in the field of analytic
number theory.

1 Notations
We first introduce the following notations that will be used throughout the lecture.

Denote distinct primes by p1, p2, · · · and natural logarithm by log. Finally, the power
function ns is understood as e(logn)s, which also extends to an arbitrary complex power s.

2 Selberg Inequality
How many primes are there? Infinitely many? The proof goes back to Euclid more

than 2,300 years ago, and it’s by contradiction.

Theorem 2.1 (Euclid). There are infinitely many prime numbers.

But what exactly is the magnitude of this infinity? The sieve of Eratosthenes is an
efficient method that gives the number of prime numbers on a fixed interval [1, x]. Now,
if we introduce the function π(x) which denote the number of primes less than x(usually
a large number), first suggested by Chebyshev, a natural question arises.

Question 2.2. Does π(x) admit an asymptotic expression as x → ∞?

The following theorem was conjectured independently by Legendre and Gauss.
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Theorem 2.3 (Legendre, Gauss). (The Prime Number Theorem) lim
x→∞

π(x)

/
x

logx = 1.

An approximation was first formulated by Legendre via numerical computations. But
Gauss’ observation was more profound, which makes use of the Mangoldt function

Λ(n) = Λ1(n) =

log p, n = pm,m ≥ 1,

0, n ̸= pm.

If we consider only the square-free n’s, Λ(n) can be viewed as a weighted characteristic
function for prime numbers.

We know that if n is close to x, for instance, c1x < n < c2x, logn ∼ logx. This leads
to the formulation of 2.3 , suggested by Gauss:

lim
x→∞

1

x

(∑
p≤x

log p
)

= 1.

Remark 2.4. 这里向同学们推荐一本书：《素数定理的初等证明》（1988，潘承洞，潘承
彪著）.

Russian mathematician Chebyshev was among the first ones who worked on the
prime number theorem. He proved that the limit superior and limit inferior were both
very close to 1. By applying the binomial expansion, where the middle term has the

maximal coefficient, he proved that the limit of π(x)
/

x

logx , if it exists, has to be 1.

It wasn’t until our insightful Riemann introduced the Zeta function and laid the
foundations for analytic number theory that Hadamard and de la Vallée Poussin were
able to prove the prime number theorem in 1896. The proof required tools from analysis
(we know that the prime number theorem is equivalent to a certain property of an analytic
function).

Question 2.5. Is there an elementary proof for the prime number theorem?

In 1921, G. H. Hardy stated that he was doubtful such a proof could be found, saying
if one was found ”that it is time for the books to be cast aside and for the theory to be
rewritten.”1 However, two years following Hardy’s death in 1947, Erdös and Selberg found
an elementary proof.

We shall now follow Selberg and examine the idea of this proof, with no extensive
use of calculus or other advanced analytic approaches.

Note that we do make use of the following facts, which are considered ”elementary”:
1Wikipedia page

https://en.wikipedia.org/wiki/Elementary_proof
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Remark 2.6. ∑
n<x

1

n
= logx+ γ,

where γ is the Euler constant (we have dropped the error term) and∑
n<x

logn
n

=
1

2
log2 x+ c logx+ · · · .

Definition 2.7. Λ2(n) = Λ(n) logn+
∑

n1n2=n

Λ(n1)Λ(n2), where n is square-free.

Then

Λ2(n) =


log2 p, n = p

2 log p1 log p2, n = p1p2

0, otherwise.

2.3 states that
∑
n≤x

Λ1(n) ∼ x, which we cannot prove for the time being. However we

have the following

Theorem 2.8 (Selberg Inequality).
∑
n<x

Λ2(n) = 2x logx+O(x) for x ≥ 1.

How did Selberg come up with this equality? Note that for sufficiently large x,∑
n≤x

log x
n
= O(x), since log x

n
= O

(√
x
n

)
. Then what can we say about

∑
n≤x

logk x
n
, where

k is a fixed integer? This naturally leads to the Selberg inequality stated above.

Proposition 2.9. Λn =
∑
d|n

µ(d) log 1
d
=
∑
d|n

µ(d) log x
d
, where n > 1 and µ is the Möbius

function.

The Möbius function only takes on three values:

µ(n) =


1, n = 1,

(−1)r, n = p1p2 · · · pr where p1, p2, · · · , pr are distinct,

0, otherwise.

Hence ∑
d|n

µ(d) =

1, n = 1,

0, n > 1.

Since Λ2(n) =
∑
d|n

µ(d) log2 n

d
∼
∑
d|n

µ(d) log2 x

d
, we note that

∑
n≤x

Λ(n) =
∑
n≤x

∑
d|n

µ(d) log x

d

 =
∑
d≤x

µ(d) log x

d

∑
n≤x
d|n

1.
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Taking into consideration that
∑
n≤x
d|n

1 =
x

d
+O(1) and |µ(d)| ≤ 1, we conclude that

∑
n≤x

Λ(n) =
∑
d≤x

µ(d)

d
x log x

d
+O(x).

Selberg was able to deal with the first term by applying log x
d
=
∑
k≤x

d

1
k
−γ+ · · · , and found

that the dominant term was exactly x. Unfortunately, the error term is also x. Thus he
had merely given a different proof of∑

n≤x

Λ(n) = O(x),

which is nothing other than a repetition of Chebyshev’s previous result.
However, if we raise the power of the logarithm:

∑
n≤x

Λ2(n) =
∑
n≤x

∑
d|n

µ(d) log2 x

d

+O(x) =
∑
d≤x

µ(d)

d
x log2 x

d
+O(x).

Substituting with

log2 x

d
= 2

∑
k≤x

d

τ(k)

k
+ c1

∑
k≤x

d

1

k
+ c2 + · · ·+O(_),

where τ(k) =
∑
d|k

1 is the totient function, applying convolution relations and making

variable substitutions we obtain the Selberg inequality.
We would like to point out Bombieri’s doctoral dissertation dealt with other powers

of the logarithm, leading to the so-called generalised Selberg inequalities.

3 Connections with the Riemman Zeta Function
The well-known Riemann zeta function is defined as

ζ(s) =
∞∑
n=1

1

ns
, Re{s} > 1.

How does the ζ function relate to prime numbers and the Λ functions?
We observe that

∞∑
n=1

Λ(n)

ns
= −ζ ′(s)

ζ(s)
,

where Re(s) > 1. We also have
∞∑
n=1

Λ2(n)

ns
=

ζ ′′(s)

ζ(s)
=

[
ζ ′(s)

ζ(s)

]′
+

[
ζ ′(s)

ζ(s)

]2
.



4 SELBERG’S SIEVE METHOD 5

This is true for not only the zeta function but also all C2 functions. In fact, one can
verify that for f ∈ C2, it holds that

f ′′(s)

f(s)
=

[
f ′(s)

f(s)

]′
+

[
f ′(s)

f(s)

]2
.

4 Selberg’s Sieve Method
It is a bit difficult to explain what the sieve method is. The original sieve method

filters out the composite numbers in a given interval and gives a table of prime numbers.
Today sieve methods operate on sets whose definitions involve a number x that tends to
infinity.

For example, there are several formulations of the Goldbach Conjecture.2 One of
them can be described as follows: let n be sufficiently large. If the set S = {2n−p | p < 2n}
contains a prime number p′, we have 2n = p+ p′ and this gives an even number expressed
as the sum of two primes. The Goldbach Conjecture therefore simply asserts that for each
n the lower bound of #{ primes in S} is strictly greater than zero.

Norwegian mathematician Viggo Brun was the first to introduce the following: let
D ⊂ [1, 2n]. For m < 2n, consider

∑
d|m
d∈D

µ(d)

> 0, m = p,

≤ 0, m ̸= p.

So we only have to justify that

∑
p<2n

 ∑
d|2n−p
d∈D

µ(d)

 > 0.

Brun also introduced another set D∗ for m ∈ [x, x+
√
x], and considered it together

with the sum

∑
d|m
d∈D∗

µ(d) =

1, m = p,

≥ 0, m ̸= p.

We wish to bound the following:

#{p | p ∈ [x, x+
√
x]} ≤

∑
m∈[x,x+

√
x]

∑
d|m
d∈D∗

µ(d)

 ≤ ?.

2For more reference see https://people.maths.bris.ac.uk/ matdb/tcc/SIEVES/sieves.pdf
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This is the Brun sieve, which is fairly inaccurate.
As we can see, the fundamental goal of sieve theory is to produce upper and lower

bound of the number of elements for certain finite sets.
For Selberg’s sieve we use, instead of

∑
d|m
d∈D∗

µ(d),

∑
d|m

λd

2

, where λd ∈ R, λ1 = 1.

Some famous achievements of the sieve method are from Chen etc.

5 The Twin Prime Conjecture
The characteristic function for prime numbers is defined as

ρ(n) =

1, n = p,

0, n ̸= p.

Given {h1, h2, · · · , hk} where 0 = h1 < h2 < · · · < hk < 7000, 000, let

f(n) = ρ(n+ h1) + ρ(n+ h2) + · · ·+ ρ(n+ hk)− 1

=


−1

0

> 0 iff at least two of {n+ hi} are prime.

Claim: ∀x > 0,∃ n > x such that f(n) > 0.
We can turn to an enhanced version where we claim that there exists such n ∈ (x, 2x).
Let g(n) ∈ R such that

∑
x<n<2x

f(n)g(n)2 > 0. If for each x there is such a function

g(n), since g2 ≥ 0 and at least one of the summed terms is positive, f(n) > 0 and we
have proved the claim.

Modern sieve methods are all about suitable choices of the function g(n) above.

（讲稿系讲座整理而成，如有疏漏敬请谅解——国科大 1511 班，张远航）
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